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Hierarchy of effective-mass equations for semiconductor nanostructures

E. E. Takhtamirov and V A. Volkov
Institute of Radioengineering and Electronics of RAS,
Mokhovaya, 11, 103907 Moscow, Russia

Abstract. It has been developed a generalization of the Kohn-Luttinger envelope-function
method that is applicable for description of the electron and hole states in many-layer (001) het-
erostructures, composed of related lattice-matched III-V semiconductors, with atomically abrupt
heterointerfaces. It was shown that additional contributions to the standard one-band effective-
mass equations may be classified with powers of the parameter ka,,. << 1, where 1/k is the
characteristic size of the envelope function, and the length a,.... is of the order of the lattice
constant. It was formulated a hierarchy scheme for the effective-mass equations, the nth level
of which accounts for taking into consideration all corrections up to (kamax)'. Zero level of the
hierarchy corresponds to the standard effective-mass equations with position-independent effec-
tive mass. On the first level of the hierarchy each heterointerface gives an additional 3-function
contribution to the potential energy. Only on the second level the position-dependent effective
mass appears as well as corrections for the weak non-parabolicity of the spectrum and spin-
orbit interface interaction. At higher levels of the hierarchy non-local contributions appear, and a
one-band differential effective-mass equation does not exist.

Currently the question on applicability of the envelope-function (EF) method of Lut-
tinger and Kohn [1] and the effective-mass (EM) equations for real nanostructures is
discussed intensively [2]. There are several problems associated with the envelope-
function method for heterostructures. The first one is whether the method can really
be applicable when studied are the structures whose potential changes considerably on
the lattice constant scale. As the matter of fact to researchers' attention the question
has been overtopped with the second problem concerning the correct form of the ef-
fective kinetic energy operator (KEO) in the effective-mass method, which is just the
one-band EF approximation, when EM parameters are position-dependent. To avoid
this second problem some authors prefer using complicated many-band EF schemes
even when the simple one-band approximation would provide them with at least quali-
tatively correct solution. Eliminating the KEO problem this way one still has a trouble
with the first question. The main goal of the work is to derive simple EM equations
for heterostructures taking into account abruptness of the heterostructure potential as
well as position-dependent EM. Considered are the (001) heterostructures composed
of related (band offsets are small as compared to the band gaps) lattice-matched 111-V
semiconductors. The presented below result is a kind of recipe, but the recipe based
on a rigorous formalism of the Luttinger-Kohn EF method [2].

Generally, one-band EF equations (an equation for simple band and a set of equations
for degenerate band) are obtained via a perturbation theory procedure. So there must
be small parameters. When one deals with shallow states, the typical energy of which
_P is small as compared to the typical energy separation from other bands E-g, such a

small parameter is E/Eg. The small parameter may be put down as Ak; here k is
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the characteristic wave number of the state in question, and A = 2hP/ (moEg), where
P is the typical interband matrix element of momentum and mo is the free electron
mass. When the proper band edge EM m is mainly formed with the k. p interaction,

we may adopt A h/l mg. Another small parameter emerges when we face abrupt

changes of the heterostructure potential. The parameter is ak, where a is the lattice
constant. It is important that for a good deal of materials we have a - A (e.g. for
GaAs A ; 6 A). This is the reason why we should retain terms to the same order in
these two parameters in the one-band EF equations. Now we are about to discuss the
obtained EM equations. The equations are presented the way they govern electron and
hole states in a (001) symmetric quantum well of width L in the absence of external
potentials, and L = NAa/2, where .V is an integer.

In the usual (bulk) EM equation [1] for electrons
[ + V (z)] F,= E

the KEO and potential energy have standard form:

2m-- 2m'~ Vbulk (Z) = /AEc,{( (--z) +q (e (z - L)}, (1)

where m is the bulk EM, AE, is the conduction band offset, F, is the conduction
band EE The function Vblk describes the rectangular shape of the conduction band
QW. Allowing for k. p interaction with remote bands as well as terms arisen due to
abrupt change of the potential at the heterointerfaces give an opportunity to classify
these contributions with powers of the parameter kamax < 1, where amax = max(A, a).
We present the hierarchy scheme for the EM equations, where the nth level of the
hierarchy accounts for taking into consideration all corrections up to (kamax)n.

Conduction band QW states near F point

Oe) Zero level of the hierarchy for electrons. The effective Hamiltonian has "bulk" form
(1), that is

() = Tbulk V(0 )(Z) = Vbulk(Z).

We emphasize that at this (the main!) level of the hierarchy m(z) = const.
le) First level of the hierarchy. As taken into account are terms having ak smallness,

KEO does not change, and in the potential energy there appear S-function corrections:

,(T bulk; V(')(Z) = Vbulk(Z) + dl{6 (z) + 6 (z -- L)}.

The appearance of the two M-functions at the heterointerfaces is due to abrupt change
of the potential and corrections arisen as we describe the real (non-abrupt) form of the
heterostructure potential with the Heaviside step-functions. The parameter d, depends
both on bulk properties of the structure components and the microscopic form of the
transition region of the heterojunction (HJ), and generally differs for each different
heterointerface.

2e) Second level of the hierarchy. If we wish to take into account corrections of
the order of (ak) 2, (Ak) 2 and (ak)(Ak), we should deal with the equation where the
concept of the position-dependent EM appears:

(2)= (zI pm () pm (Z) pmM (z) + ca0p 4 + /30o (P2 2 2 2•,2) (,p;p + p; p2 + P; PZ) '
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V(2) = V(- ) + d2 [p X n] . o,{6 (z) - 6 (z - L)}

Here m(z) is the position-dependent band edge EM, ao and /30 are the weak non-
parabolicity parameters, n is the unit Oz-axis vector, o, are the Pauli matrices. The
parameters a (for /3 we have 2ca +/3 = -1) and d2 also depend on bulk properties of the
materials of the structure as well as on the microscopic structure of the heterointerface,
and should be different for each different HJ (we have a symmetric structure, so the
parameters are the same for both HJs). The parameter d2 originates from spin-orbit
interaction, which is taken into account through the perturbation theory, the typical
spin-orbit interaction parameter being considered to be of the order of the band offsets
(the case takes place for a good deal of heterostructures).

Now we present the reasons why one cannot achieve better accuracy for the one-
band approximation in the framework of differential equations of finite order. Originally
the many-band set of k. p equations is a set of k-space integral equations, and k-space is
restricted with the first Brillouin zone. For shallow states one may use an approximate
canonical transformation of the set (or another unitary perturbation scheme) and move
onto the one-band EF approximation. It is important that not all k belonging to the first
Brillouin zone may now correctly contribute to such an equation. The evidence comes
from the following. For a bulk material one may use a series to present the spectrum
E(k) of the states near F point. Such a series has a finite radius of convergence K0,
which is determined with the strength of the k • p interaction and proximity of other
bands. The estimation gives K0 1 1/A. This way for the one-band EF equation k-
space is restricted with radius K0 rather than the first Brillouin zone boundary. To
obtain differential equations in r-space one should go beyond the k-space effective
limits. The procedure would induce an exponentially small error if either potential or
EF were smooth on the lattice constant scale. That would mean the Fourier transform
of either potential or EF drops exponentially as k increases. But in our case we have
abrupt heterostructure potential. One may see from all above that F, is not smooth,
in particular its second derivative has two discontinuities with the relative jumps of
the order of unit. This means that if L is large enough, e.g. the conduction band EF
Fourier transform F (k) ox 1/(kz )3. So, the principal error of the one-band method is
(k1/K0) 3 - (Ak )3. It is the error that does not allow one to reach better accuracy than
that given with the second level equation.

Hole QW states near F point

The only difference between the EM method for conduction and valence bands lies
in more complicated character of the EF equations for the latter case. This way zero
hierarchy level of accuracy of the one-band EM method is plain. As for the second
one, the proper equation has so many parameters, some of which depend on specific
microscopic details of heterointerfaces, that in practice it would be useless, and similar
equation for simple band could have probably satisfied the academic interest. So, we
present the first grade. In this approximation the Hamiltonian for valence band states is
a sum of the standard (bulk) 6 x 6 KEO matrix, and the potential energy 6 x 6 matrix.
It is the latter that is presented below. We use the basis {I J, j,) } of eigenfunctions of
the total angular momentum J and his projection j_, which are linear combinations of
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the r 15 valence band edge Bloch functions and spin. We adopt the following ordering:

3,3 3 3 ) 3 ý3 3, 1 1,1 I,-I),

and the phase agreement is the same as in [1]. So, the potential energy matrix is

(VF•l VoQ, -iV1VoO")

S-\/-2 Voýy7 0 Vr, I

Here
VI- = Erp + A UI-{e (-z) + e (z - L)} + X1{6 (z) + 6 (z - L)

Vf 7 = Er7 + AUF,{e (-z) + e (z - L)} + X2{6 (z) + 6 (z - L)

VO = X3{6 (z) - 6 (z - L)}.

The notations are the following: Er, and Er, are the F 8 and F7 band edge energies
of the well material, AUr8 and AUr] are the proper band offsets. Two parameters X,
and X2 have the same origin as d, for the conduction band case, and the parameter X3
appears only as we correctly process the abrupt changes of the heterostructure potential
(that means the parameter vanishes for smooth potentials). The last parameter defines
in particular the strength of the zone center mixing of light and heavy holes [3].

In conclusion we presented three grades of accuracy that can be achieved in the
one-band EF approximation, and this way formulated three hierarchy levels for the
EM equations. There are effects that cannot be described using the zero level of the
hierarchy, e.g. zone center light hole-heavy hole mixing in the valence band. There
are also effects that can be dealt with only using the second-level equations of the
hierarchy, e.g. spin splitting of the subbands when longitudinal electric field is applied
(when the presence of the terms like the one proportional to d2 is crucial), or some
optical transitions.
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